The Drosophila LIM-only gene, dLMO, is mutated in Beadex alleles and might represent an evolutionarily conserved function in appendage development.

نویسندگان

  • C Zeng
  • N J Justice
  • S Abdelilah
  • Y M Chan
  • L Y Jan
  • Y N Jan
چکیده

The process of wing patterning involves precise molecular mechanisms to establish an organizing center at the dorsal-ventral boundary, which functions to direct the development of the Drosophila wing. We report that misexpression of dLMO, a Drosophila LIM-only protein, in specific patterns in the developing wing imaginal disc, disrupts the dorsal-ventral (D-V) boundary and causes errors in wing patterning. When dLMO is misexpressed along the anterior-posterior boundary, extra wing outgrowth occurs, similar to the phenotype seen when mutant clones lacking Apterous, a LIM homeodomain protein known to be essential for normal D-V patterning of the wing, are made in the wing disc. When dLMO is misexpressed along the D-V boundary in third instar larvae, loss of the wing margin is observed. This phenotype is very similar to the phenotype of Beadex, a long-studied dominant mutation that we show disrupts the dLMO transcript in the 3' untranslated region. dLMO normally is expressed in the wing pouch of the third instar wing imaginal disc during patterning. A mammalian homolog of dLMO is expressed in the developing limb bud of the mouse. This indicates that LMO proteins might function in an evolutionarily conserved mechanism involved in patterning the appendages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression Beadex mutations and loss-of-function heldup-a mutations in Drosophila affect the 3' regulatory and coding components, respectively, of the Dlmo gene.

LIM domains function as bridging modules between different members of multiprotein complexes. We report the cloning of a LIM-containing gene from Drosophila, termed Dlmo, which is highly homologous to the vertebrate LIM-only (LMO) genes. The 3' untranslated (UTR) of Dlmo contains multiple motifs implicated in negative post-transcriptional regulation, including AT-rich elements and Brd-like boxe...

متن کامل

Rab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila

In eukaryotes, vesicle trafficking is regulated by the small monomeric GTPases of the Rab protein family. Rab11, (a subfamily of the Ypt/Rab gene family) an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In an earlier communication, we have shown th...

متن کامل

Drosophila DLMO is a positive regulator of transcription during thoracic bristle development

The Drosophila LIM-Only (LMO) protein DLMO functions as a negative regulator of transcription during development of the fly wing. Here we report a novel role of DLMO as a positive regulator of transcription during the development of thoracic sensory bristles. We isolated new dlmo mutants, which lack some thoracic dorsocentral (DC) bristles. This phenotype is typical of malfunction of a thoracic...

متن کامل

Beadex Function in the Motor Neurons Is Essential for Female Reproduction in Drosophila melanogaster

Drosophila melanogaster has served as an excellent model system for understanding the neuronal circuits and molecular mechanisms regulating complex behaviors. The Drosophila female reproductive circuits, in particular, are well studied and can be used as a tool to understand the role of novel genes in neuronal function in general and female reproduction in particular. In the present study, the ...

متن کامل

The LIM homeodomain protein dLim1 defines a subclass of neurons within the embryonic ventral nerve cord of Drosophila

Members of the LIM homeodomain family of transcription factors have been implicated in specifying cell identity in a range of species. In Drosophila three LIM homeobox genes, apterous, lim3 and isl, have been shown to control axon pathfinding of subsets of neurons within the embryo. Here we describe the isolation and characterization of another LIM homeobox gene in Drosophila termed dlim1, a ho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 18  شماره 

صفحات  -

تاریخ انتشار 1998